Dicarbonyl stress in clinical obesity
نویسندگان
چکیده
منابع مشابه
Dicarbonyl stress and glyoxalases in ovarian function.
The ovary is the main regulator of female fertility. Changes in maternal health and physiology can disrupt intraovarian homoeostasis thereby compromising oocyte competence and fertility. Research has only recently devoted attention to the involvement of dicarbonyl stress in ovarian function. On this basis, the present review focuses on clinical and experimental research supporting the role of d...
متن کاملDicarbonyl Stress and Atherosclerosis: Is It All RAGE?
Atherosclerotic vascular disease is a major cause of cardiovascular (CV) morbidity and mortality and a significant driver of health care costs in patients with diabetes. Systemic abnormalities, including dyslipidemia, insulin resistance, hyperinsulinemia, hyperglycemia, oxidative stress, accentuated renin-angiotensin system, and tissue inflammation, have been proposed to play a role in mediatin...
متن کاملObesity and systemic oxidative stress: clinical correlates of oxidative stress in the Framingham Study.
OBJECTIVE To determine the clinical conditions associated with systemic oxidative stress in a community-based cohort. Information regarding cardiovascular risk factors associated with systemic oxidative stress has largely been derived from highly selected samples with advanced stages of vascular disease. Thus, it has been difficult to evaluate the relative contribution of each cardiovascular ri...
متن کاملDicarbonyl stress in cell and tissue dysfunction contributing to ageing and disease.
Dicarbonyl stress is the abnormal accumulation of dicarbonyl metabolites leading to increased protein and DNA modification contributing to cell and tissue dysfunction in ageing and disease. Enzymes metabolising dicarbonyls, glyoxalase 1 and aldoketo reductases, provide an efficient and stress-response enzyme defence against dicarbonyl stress. Dicarbonyl stress is produced by increased formation...
متن کاملIncreased Dicarbonyl Stress as a Novel Mechanism of Multi-Organ Failure in Critical Illness
Molecular pathological pathways leading to multi-organ failure in critical illness are progressively being unravelled. However, attempts to modulate these pathways have not yet improved the clinical outcome. Therefore, new targetable mechanisms should be investigated. We hypothesize that increased dicarbonyl stress is such a mechanism. Dicarbonyl stress is the accumulation of dicarbonyl metabol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Glycoconjugate Journal
سال: 2016
ISSN: 0282-0080,1573-4986
DOI: 10.1007/s10719-016-9692-0